A Novel Particle Swarm Optimization Algorithm for Multi-Objective Combinatorial Optimization Problem
نویسندگان
چکیده
The Combinatorial problems are real world decision making problem with discrete and disjunctive choices. When these decision making problems involve more than one conflicting objective and constraint, it turns the polynomial time problem into NP-hard. Thus, the straight forward approaches to solve multi-objective problems would not give an optimal solution. In such case evolutionary based meta-heuristic approaches are found suitable. In this paper, a novel particle swarm optimization based meta-heuristic algorithm is presented to solve multi-objective combinatorial optimization problems. Here a mapping method is considered to convert the binary and discrete values (solution encoded as particles) to a continuous domain and update it using the velocity and position update equation of particle swarm optimization to find new set of solutions in continuous domain and demap it to discrete values. The performance of the algorithm is compared with other evolutionary strategy like SPEA and NSGA-II on pseudo-Boolean discrete problems and multi-objective 0/1 knapsack problem. The experimental results confirmed the better performance of combinatorial particle swarm optimization algorithm.
منابع مشابه
Discrete Multi Objective Particle Swarm Optimization Algorithm for FPGA Placement (RESEARCH NOTE)
Placement process is one of the vital stages in physical design. In this stage, modules and elements of circuit are placed in distinct locations according to optimization basis. So that, each placement process tries to influence on one or more optimization factor. In the other hand, it can be told unequivocally that FPGA is one of the most important and applicable devices in our electronic worl...
متن کاملA Multi-Objective Particle Swarm Optimization for Mixed-Model Assembly Line Balancing with Different Skilled Workers
This paper presents a multi-objective Particle Swarm Optimization (PSO) algorithm for worker assignment and mixed-model assembly line balancing problem when task times depend on the worker’s skill level. The objectives of this model are minimization of the number of stations (equivalent to the maximization of the weighted line efficiency), minimization of the weighted smoothness index and minim...
متن کاملA Novel Hybrid Modified Binary Particle Swarm Optimization Algorithm for the Uncertain p-Median Location Problem
Here, we investigate the classical p-median location problem on a network in which the vertex weights and the distances between vertices are uncertain. We propose a programming model for the uncertain p-median location problem with tail value at risk objective. Then, we show that it is NP-hard. Therefore, a novel hybrid modified binary particle swarm optimization algorithm is presented to obtai...
متن کاملA Multi-Objective Particle Swarm Optimization Algorithm for a Possibilistic Open Shop Problem to Minimize Weighted Mean Tardiness and Weighted Mean Completion Times
We consider an open shop scheduling problem. At first, a bi-objective possibilistic mixed-integer programming formulation is developed. The inherent uncertainty in processing times and due dates as fuzzy parameters, machine-dependent setup times and removal times are the special features of this model. The considered bi-objectives are to minimize the weighted mean tardiness and weighted mean co...
متن کاملPareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm
One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. of Applied Metaheuristic Computing
دوره 2 شماره
صفحات -
تاریخ انتشار 2011